
Ponder2 - The Self Managed Cell

Anatomy of a Policy Service and Practical Exercises

Kevin Twidle, Emil Lupu
Department of Computing
Imperial College London
http://ponder2.net

Saturday, 2 May 2009

http://www-dse.doc.ic.ac.uk/policies
http://www-dse.doc.ic.ac.uk/policies

Overview

•Tutorial Installation

•Policies, Events and Managed Objects

•The Self Managed Cell Architecture

•PonderTalk

•Body Sensor Node Example and Exercises

•Authorisation Policies and Exercises

•Writing a new Managed Object in Java

2

Saturday, 2 May 2009

Tutorial Installation

•Use the CD, USB key or http://ponder2.net/tutorial.zip

•Unzip Ponder2Tutorial.zip to your Desktop

•Open Ponder2Tutorial/index.html for documentation

•Open a Terminal or CMD window for running Ponder2
• cd Desktop/Ponder2Tutorial

• cd c:\Documents and Settings\name\Desktop\Ponder2Tutorial

• ant rmi or ./ant rmi to test the installation

•Windows users may have to set JAVA_HOME if ant
complains about tool.jar not being found.
set JAVA_HOME=c:\Program Files\Java\jdk1.5.0_12

•These slides are in Ponder2Tutorial/Ponder2Tutorial.pdf
3

Saturday, 2 May 2009

Tutorial Installation

•Use the CD, USB key or http://ponder2.net/tutorial.zip

•Unzip Ponder2Tutorial.zip to your Desktop

•Open Ponder2Tutorial/index.html for documentation

•Open a Terminal or CMD window for running Ponder2
• cd Desktop/Ponder2Tutorial

• cd c:\Documents and Settings\name\Desktop\Ponder2Tutorial

• ant rmi or ./ant rmi to test the installation

•Windows users may have to set JAVA_HOME if ant
complains about tool.jar not being found.
set JAVA_HOME=c:\Program Files\Java\jdk1.5.0_12

•These slides are in Ponder2Tutorial/Ponder2Tutorial.pdf
3

Demo Time
Try the built-in client shell
ant run

In another terminal window
telnet localhost 13570
$ ls
$ cd factory
$ ls -l

Saturday, 2 May 2009

•Obligation or Event Condition Action(ECA) Policies

•Authorisation Policies

•Can be dynamically changed: loaded, enabled, disabled
without interrupting the system

•Are specified for groups of objects, often before objects
are instantiated

Policies

Rules governing choices in the behaviour of
systems

4

Saturday, 2 May 2009

Events

•Event = notification with named attributes.

•Created by Managed Objects.

•Trigger ECA policies.

•Can integrate with one or several external event
systems through adapter objects. e.g xmlBlaster

5

Managed
Object

Alarm:
Value:

Pressure
126

Alarm Event Policies

Saturday, 2 May 2009

Managed
Objects

Policy-based closed adaptation loop

6

Events

Management

New
functionality

E V E N T

Decisions

Actions Obligation
Event Condition Action

Policies (ECA)Policies
(Authorisation)

B U S

Saturday, 2 May 2009

What is a Self Managed Cell?

•A set of hardware and software components forming an
administrative domain that is able to function
autonomously and thus capable of self-management

•Management services interact with each other through
asynchronous events propagated through a content-
based event bus

•Policies define the management functions

•Policies provide local closed-loop adaptation

•Able to interact with other SMCs and able to compose
in larger scales SMCs 7

Saturday, 2 May 2009

Self-Managed Cell (SMC)

8

Saturday, 2 May 2009

Self-Managed Cell (SMC)

8

Saturday, 2 May 2009

Self-Managed Cell (SMC)

8

Saturday, 2 May 2009

ECA Policy Example

9

policy := root/factory/ecapolicy create.
policy event: root/event/bsnValue; // From tut6.p2
 condition: [:name :oldValue :newValue |

 // Add a debugging print statement
 root print: "Got "+ name + " old " + oldValue + " new " + newValue.

 name == "HEART1" & (newValue > 130) & (oldValue <= 130)

];
 action: [

domain/bsn/BP1 setSampleRate: 500 .

 root/alarm setAlarm: true; show.

].
domain/policy at: "hearthigh" put: policy.
policy active: true.

// Create the event type for new values from sensors, from tut2.p2
bsnvalue := root/factory/event

 create: #("name" "newValue" "oldValue" "rate").
root/event at: "bsnValue" put: event.

Saturday, 2 May 2009

Authorisation Policy

Authorisation policies allow or deny
requests from one managed object
to another

 •
 PEP1 and PEP4 are used to enforce
authorisation policies for the subject side

 •
 PEP2 and PEP3 are used to enforce
authorisation policies for the target side

10

PEP1 protects the subject from revealing sensitive data

• e.g. sending a password to a phishing site, or accessing a blacklisted site
PEP2 protects the target from bad requests and bad data

• c.f. a traditional firewall or home router
PEP3 protects the target from giving out sensitive data

• protects privacy should result of an action contain info that should not be revealed
PEP4 protects the subject from receiving bad data

• e.g. buffer exploit

Saturday, 2 May 2009

Authorisation Policy Example

11

// nurseauth.p2
// Don't allow general nurses to set the sensor rate
root/tauthdom at: "n1" put:

 (newauthpol subject: root/hospital/bedlam/nurse
 action: "setSampleRate:"
 target: root/hospital/bedlam/ward
 focus: "t").
root/tauthdom/n1 reqneg.
root/tauthdom/n1 active: true.

// Allow ward nurses to set the sensor rate
root/tauthdom at: "n2" put:

 (newauthpol subject: root/hospital/bedlam/ward/Crippen/nurse
 action: "setSampleRate:"
 target: root/hospital/bedlam/ward/Crippen/bed
 focus: "st").
root/tauthdom/n2 active: true.

See http://ponder2.net for full authorisation documentation

Saturday, 2 May 2009

http://ponder2.net
http://ponder2.net

Domains for grouping objects

•A domain is a collection of objects
which have been explicitly grouped
together for management purposes e.g.
to apply a common policy

•Domains can be nested

•Domains can overlap

•Policies specified in terms of domains

•Can change domain membership
without changing policy

A

ED

B C

12

Saturday, 2 May 2009

Managed Objects

•Self-contained entities capable of receiving messages

•Three pre-defined types of Managed Objects:
domains, event templates, policies

•Addressed by name

•e.g. root/policy/temppolicy

•Also basic value types including Strings, Numbers,
Arrays, Hashes, XML etc.

•New Managed Objects e.g. device adaptors are written
in Java with simple annotations to manage messages

13

Saturday, 2 May 2009

•Devices are started using the Body
Sensor Node Controller

•Devices may be started and stopped
by clicking on the buttons or by
closing the individual device
windows. Close the controller to
terminate it.

•To run the BSN controller use
./ant bsn

The SMC in action

14

Saturday, 2 May 2009

•Devices are started using the Body
Sensor Node Controller

•Devices may be started and stopped
by clicking on the buttons or by
closing the individual device
windows. Close the controller to
terminate it.

•To run the BSN controller use
./ant bsn

Demo Time
./ant bsn
./ant tut6
•Click on different buttons to

start and remove the
various sensors

•Get BP and Heart windows
•Try raising the Heart Rate

The SMC in action

14

Saturday, 2 May 2009

ECA Policy Example

15

policy := root/factory/ecapolicy create.
policy event: root/event/bsnValue; // From tut6.p2
 condition: [:name :oldValue :newValue |

 // Add a debugging print statement
 root print: "Got "+ name + " old " + oldValue + " new " + newValue.

 name == "HEART1" & (newValue > 130) & (oldValue <= 130)

];
 action: [

root/bsn/BP1 setSampleRate: 500 .

 root/alarm setAlarm: true; show.

].
root/policy at: "hearthigh" put: policy.
policy active: true.

// Create the event type for new values from sensors, from tut2.p2
bsnvalue := root/factory/event

 create: #("name" "newValue" "oldValue" "rate").
root/event at: "bsnValue" put: event.

Saturday, 2 May 2009

ECA Policy Example

15

policy := root/factory/ecapolicy create.
policy event: root/event/bsnValue; // From tut6.p2
 condition: [:name :oldValue :newValue |

 // Add a debugging print statement
 root print: "Got "+ name + " old " + oldValue + " new " + newValue.

 name == "HEART1" & (newValue > 130) & (oldValue <= 130)

];
 action: [

root/bsn/BP1 setSampleRate: 500 .

 root/alarm setAlarm: true; show.

].
root/policy at: "hearthigh" put: policy.
policy active: true.

// Create the event type for new values from sensors, from tut2.p2
bsnvalue := root/factory/event

 create: #("name" "newValue" "oldValue" "rate").
root/event at: "bsnValue" put: event.

Demo Time
•Now turn off the policy to raise the alarm
telnet localhost 13570
$ ls policy
$ root/policy/hearthigh active: false.
$
•Try raising and lowering the Heart Rate

Saturday, 2 May 2009

Ponder2 Language - PonderTalk

•Ponder2 Managed Objects are written in Java

•Need a language that can be used to specify Managed
Objects and the messages to be sent to them

•Ponder2 version 1 used XML as a configuration and
control language - very messy!

•PonderTalk is based on Smalltalk

• Smalltalk language was designed to send messages to objects

16

Saturday, 2 May 2009

Basic Syntax

•PonderTalk is a sequence of statements

•Statements are like sentences they are separated with a
full-stop (period)

•A statement specifies a receiver (object) and a message
(command) to be sent to the receiver

•The receiver returns another object (or itself) in response
to a message

17

object message. object message. (object message) message

Saturday, 2 May 2009

Message Types

•Unary

•No argument values

•Binary

•One argument value

•Keyword

•One or more arguments

train stop.

train + carriage.

train goto: "London" at: 1400.

18

Saturday, 2 May 2009

Unary Message

•Messages with no arguments

•c.f. function calls with no arguments

PonderTalk Java

train start train.start()

train stop train.stop()

19

Saturday, 2 May 2009

Binary Message

•Symbol and argument sent to receiver

•Train is sent the message “+ carriage”. Train adds the
carriage to the back of its carriages and returns itself
(the train). This allows the following:

•c.f.

train + carriage.

train + carriage1 + carriage2 + carriage3.

((train + carriage1) + carriage2) + carriage3.

PonderTalk Java

train + carriage train.plus(carriage)

“string1” == “string2” “string1”.equals(“string2”) 20

Saturday, 2 May 2009

Keyword Message

•Functions with one or more arguments

•All arguments are named

•Keyword arguments are referred to as a concatenation
e.g. goto:at:
(this will be used later when writing Java objects)

PonderTalk Java
train setSpeed: 60 train.setSpeed(60)

train goto: “London” at: 1200 train.setOffFor(“London”, 1200)

21

Saturday, 2 May 2009

Precedence

•Unary > Binary > Keyword

•Same Precedence - Left to Right

As Written Precedence

train stop + carriage (train stop) + carriage

train + carriage start train + (carriage start)

(train + carriage) start (train + carriage) start

train stop start (train stop) start

train speed: train max train speed: (train max)

3 + 4 * 5 (3 + 4) * 5

3 plus: 4 times: 5 (3 plus: 4) times: 5

22

Saturday, 2 May 2009

Context variables

•Context variables are named objects that are referred to
in the context of the statement. They are not referenced
through the domain structure

•May be used as temporary variables

•Use assignment to create a context variable then use as
any other object

// Hold a factory object
alarmfact := root load: "AlarmDisplay".
// Create an instance
alarmfact create.
// Hold a number (unrelated to alarmfact)
size := 43.
size := size * 2. 23

Saturday, 2 May 2009

Return Values

•The return value from a command sent to an object is
determined by the object

•A train getting an extra carriage may return itself

•A factory (c.f. class) receiving a create message will
return a new object of the correct type

•In a Java Managed Object a void method returns the
Managed Object itself

•The following returns a new Domain Managed Object

root/factory/domain create.
24

Saturday, 2 May 2009

Blocks

•Statements can be grouped into blocks

•Blocks are objects

•Blocks can take arguments

•Block execution is delayed

•Blocks are closures

•Blocks return the result of their last statement

•c.f. dynamic functions 25

myBlock := [:msg | root print: msg].

Saturday, 2 May 2009

Blocks - Execution

•A simple block

•To execute it

•or

[root print: "Hello, World!"] value.

myBlock := [root print: "Hello, World!"].

myBlock value.

26

Saturday, 2 May 2009

Blocks - Execution

•A simple block

•To execute it

•or

[root print: "Hello, World!"] value.

myBlock := [root print: "Hello, World!"].

myBlock value.

26

root print: "Hello, World!".

==

Saturday, 2 May 2009

Blocks - Closure

•A block is a closure

•Prints “Hello, World!”

message := "Hello, World!".
myBlock := [root print: message].

message := "Goodbye, Cruel World!".
myBlock value.

27

Saturday, 2 May 2009

Blocks - Arguments

•A block can declare arguments

•value: keywords are used to give the arguments values

•To execute the block

•What does this statement return?

myBlock := [:arg1 :arg2 | arg1 > arg2].

28

myBlock value: 30 value: 20.

Saturday, 2 May 2009

Cascaded Messages

•Shorthand for sending a series of messages to the same
object

•Cascaded statements use Semicolon - “;”

•See Policy examples

// Separate statements
event addArg: "a1".
event addArg: "a2".
event addArg: "a3".

// A cascaded statement
event addArg: "a1";
 addArg: "a2";
 addArg: "a3".

29

Saturday, 2 May 2009

Basic Types

•Basic Types include Domains, Arrays, Hashes, Strings,
Numbers and XML

•root is type SelfManagedCell - print, trace, load, import

•SelfManagedCell is a Domain (c.f. System in Java)

•Domains are Hashes

•Most objects can be treated as collections

•Full documentation in
 Ponder2Tutorial/index.html

30

Saturday, 2 May 2009

•Used to create a new Managed Object

•Loading new Managed Object code (currently only from
a Jar or Java class file) produces a Factory Object

•Accepts Managed Object specific create commands
and returns a new instance of a Managed Object

Factory Managed Object

factory := root load: "MyManagedObject".
root load: "net.ponder2.myproject.MyManagedObject".

newobj1 := factory create.
newobj2 := factory create: "argument".
newobj2 := factory name: "Sheep" initialValue: 12.

31

Saturday, 2 May 2009

Basic Operations

•See PonderTutorial/index.html-Ponder2 Docs-P2Hash

•Hashes - at:, at:put:

•Hashes - creation using an array

•Collections, do:, collect:

32

root at: "newName" put: managedObject.
(root at: "newName") msg.
root/newName msg.

newHash := #(name value name value) asHash.

root/mydomain do: [:name :obj |
 root/copydomain at: name put: obj.
]

Saturday, 2 May 2009

Bootstrapping Ponder2

•SMC is just an
empty domain

•Import domain
factory

•Create domains

•Import basic
factories

•Read more
PonderTalk

// Bootstrap code for Ponder2

// Import the Domain code
// and create the default domains
domainFactory := root load: "Domain".
root
 at: "factory" put: domainFactory create;
 at: "policy" put: domainFactory create;
 at: "event" put: domainFactory create.

// Put the domain factory into the factory directory
root/factory at: "domain" put: domainFactory.

// Import event and policy factories
root/factory
 at: "event" put: (root load: "EventTemplate");
 at: "ecapolicy" put: (root load: "ObligationPolicy").

// Delete the variable
// System remove: "domainFactory".

33

Saturday, 2 May 2009

Bootstrapping Ponder2

•SMC is just an
empty domain

•Import domain
factory

•Create domains

•Import basic
factories

•Read more
PonderTalk

// Bootstrap code for Ponder2

// Import the Domain code
// and create the default domains
domainFactory := root load: "Domain".
root
 at: "factory" put: domainFactory create;
 at: "policy" put: domainFactory create;
 at: "event" put: domainFactory create.

// Put the domain factory into the factory directory
root/factory at: "domain" put: domainFactory.

// Import event and policy factories
root/factory
 at: "event" put: (root load: "EventTemplate");
 at: "ecapolicy" put: (root load: "ObligationPolicy").

// Delete the variable
// System remove: "domainFactory".

33

Demo Time

ant empty

telnet localhost 13570
$ ls
$ read boot.p2
$ ls

Saturday, 2 May 2009

Example Events and Policies

P

Managed Object

Temperature
Monitor

Alarm

P

High Temp
Event

Low Temp
Event

Alarm On
Command

Alarm Off
Command

Policy

34

E V E N T B U S

Saturday, 2 May 2009

PonderTalk in Action

•refer to an object
send it commands

•Domain - at:put:, at:,
remove:, list

•Root domain - load:

•Factory - create

•Alarm - show, hide

/factory/alarm
/alarm

// Import the Alarm display
alarmfact := root load: "AlarmDisplay".
root/factory at: "alarm" put: alarmfact.

// Create an alarm instance -->
alarminst := root/factory/alarm create.
root at: "alarm" put: alarminst.

// Import the Alarm display
root/factory at: "alarm"
 put: (root load: "AlarmDisplay").

// Create an alarm instance -->
root at: "alarm"
 put: (root/factory/alarm create).

35Documentation in doc directory
Saturday, 2 May 2009

PonderTalk in Action

•refer to an object
send it commands

•Domain - at:put:, at:,
remove:, list

•Root domain - load:

•Factory - create

•Alarm - show, hide

/factory/alarm
/alarm

// Import the Alarm display
alarmfact := root load: "AlarmDisplay".
root/factory at: "alarm" put: alarmfact.

// Create an alarm instance -->
alarminst := root/factory/alarm create.
root at: "alarm" put: alarminst.

// Import the Alarm display
root/factory at: "alarm"
 put: (root load: "AlarmDisplay").

// Create an alarm instance -->
root at: "alarm"
 put: (root/factory/alarm create).

35Documentation in doc directory

Demo Time

ant tut1

telnet localhost 13570
$ ls
$ root/alarm show.

Saturday, 2 May 2009

Events

•Notification with named
values

•Event Templates created
from the Event Factory

•Events created using
Event Templates

•Events contain named
arguments and their
values

•Events trigger policies

// Create template /event/toohigh
newevent := root/factory/event.

root/event at: "toohigh"
 put: (newevent create:
 #("message" "value")
).

36

// Create template /event/toohigh
newevent := root/factory/event.

sensorevent := newevent create:
 #("message" "value")
root/event at: "toohigh"
 put: sensorevent.

Saturday, 2 May 2009

Policies

•Created with policy
factory

•Dynamically associate
an event with a policy

•Can be activated and
deactivated

•Are managed objects.
Can be moved, deleted,
created, activated,
deactivated by other
policies

// Create policy /policy/toohigh
newpolicy := root/factory/ecapolicy.

root/policy at: "toohigh"
 put: (newpolicy create).

root/policy/toohigh
 event: root/event/toohigh;
 condition: [:value | value > 10];
 action: [:message |
 root print: "Got event " + message];
 setActive: true.

37

Saturday, 2 May 2009

Body Sensor Network (BSN) Example

Adaptor

root/bsn

Radio

Ponder2 SMC

Events

root/policy

Actions

38

Discovery

(RMI)

Saturday, 2 May 2009

BSN Simulation

•Five different discoverable BSN devices and an Insulin
pump can be run

•Each device can have its value changed and the rate
at which it sends that value

•Device windows can be closed to simulate them
going out of range

39

Saturday, 2 May 2009

Discovery Event

• Discovery managed object
issues events when BSN is
detected or lost

• A policy creates or removes the
appropriate adaptor managed
object

• Adaptor object acts as proxy for
the BSN and can receive
commands for them e.g. setrate

newevent := root/factory/event.

// define root/event/newBSN
root/event
 at: "newBSN"
 put: (newevent create: #("name" "type")).

// example of creating an event
root/event/newBSN create: #("Temp1" "TempMon").

40

Saturday, 2 May 2009

Discovery Policy

•Discovery managed
object issues events
when BSN is detected or
lost

•A policy creates or
removes the appropriate
adaptor managed object

•Adaptor object acts as
proxy for the BSN and
can receive commands
for them e.g. setrate

// Create discovery policy
newpolicy := root/factory/ecapolicy.

newBSN := newpolicy create.
newBSN
 event: root/event/newBSN;
 action: [:name :type |
 root/template/bsnAdaptor
 create: name
 setActive: type
];
 setActive: true.

41

Saturday, 2 May 2009

Heart Rate Policy

•on heartrate(value)

 if (value>130)
 && oldValue<=130

•do
 /bsn/BP1
 .set(sensorRate=1)

 /alarm.alarm(on)
 /alarm.show

// Create blood pressure policy
newpolicy := root/factory/ecapolicy.

hearthigh := newpolicy create.
hearthigh
 event: root/event/bsnvalue;
 condition: [:name :newValue :oldValue |
 name == "HEART1"
 && (newValue > 130)
 && (oldValue < 130)];
 action: [
 root/bsn/BP1 setRate: 1.
 root/alarm setAlarm: true; show];
 setActive: true.

root/policy at: "hearthigh" put: hearthigh

42

Saturday, 2 May 2009

•Devices are started using the BSN
Controller

•Devices may be started and
stopped by clicking on the buttons
or by closing the individual device
windows. Close the controller to
terminate it.

•To run the BSN controller use
./ant bsn

BSN Simulation

43

Saturday, 2 May 2009

•Devices are started using the BSN
Controller

•Devices may be started and
stopped by clicking on the buttons
or by closing the individual device
windows. Close the controller to
terminate it.

•To run the BSN controller use
./ant bsn

Demo Time
ant bsn
ant tut6
•Click on different buttons to

start and remove the
various sensors

•Get BP and Heart windows
•Try raising the Heart Rate

BSN Simulation

43

Saturday, 2 May 2009

Exercise 1 - Policy writing

•Detect high glucose level, activate Insulin pump

•ex1.p2 contains basic event definitions for the pump

•You need policies to create and remove a pumpadaptor
instance.

•You need policy to detect glucose over 180 and inject a
dose of insulin every 10 seconds (change glucose rate)

•You need a policy to detect glucose under 180 and raise
the glucose monitoring rate.

•Extra points for adding the alarm (/alarm) into the mix
44

Saturday, 2 May 2009

Exercise 1 - Policy writing

•Detect high glucose level, activate Insulin pump

•ex1.p2 contains basic event definitions for the pump

•You need policies to create and remove a pumpadaptor
instance.

•You need policy to detect glucose over 180 and inject a
dose of insulin every 10 seconds (change glucose rate)

•You need a policy to detect glucose under 180 and raise
the glucose monitoring rate.

•Extra points for adding the alarm (/alarm) into the mix
44

Exercise Time
•Use the exercise documentation found in index.html
•At the bottom click on Exercise 1
•Open ex1.p2 and fill in the blanks
•Run it with ./ant ex1

Saturday, 2 May 2009

Exercise 1 - New/Lost Pump policy

•on event newPump(name)

 create new pumpadaptor in /bsn/name

•Pumpadaptor create: takes argument name

•on event lostPump(name)

 remove /bsn/name

45

Saturday, 2 May 2009

Exercise 1 - Glucose Policies

•glucosehigh policy

on event bsnvalue(name, newValue)

 if name == GLUCOSE1 && newValue > 180

 /bsn/GLUCOSE1.set(rate=10)

 /bsn/IPUMP1.inject(dose=3)

•glucosenormal policy

on event bsnvalue(name, newValue)

 if name == GLUCOSE1 && newValue <= 180

 /bsn/GLUCOSE1.set(rate=2)

46

Saturday, 2 May 2009

Notes - Alarm commands

•Factory Commands

•create

•create: “title”

•Operation Commands

•alarm title: “title”

•alarm setAlarm: true

•alarm show

•alarm hide 47

Saturday, 2 May 2009

Notes - BSNAdaptor commands

•Factory Commands

•create: “name”

•Operation Commands

•rate: “value”

48

Saturday, 2 May 2009

Notes - PumpAdaptor commands

•Factory Commands

•create: “name”

•Operation Commands

•injectDose: number

49

Saturday, 2 May 2009

Notes - Running your PonderTalk

•Create your PonderTalk in a new file called ex1.p2

•The ant file will run the complete tutorial example and
will read ex1.p2 when using the following

•ant ex1

•Add a little PonderTalk at a time to ex1.p2, then run it.
When it’s working, add a little more, then run it. etc. etc.
Use the shell to inspect your objects.

•Use print statements for debugging
 root print: “Value now “ + value.

50

Saturday, 2 May 2009

Hospital Example

51

•Hospital

•Nurses - who work at the hospital

•Wards

•Nurses - who work in the ward

•Beds

•Patient

•Body Sensor Nodes

Saturday, 2 May 2009

Hospital Example

52

Hospital

Bedlam

Ward

Crippen

Nurse

Jeckyl

Bed Nurse

Fred

Rampton

Nurse Ward

Curie Hyde

Bed

Fred

NurseFlorence

BSN

Blood
Pressure

Pulse

Daisy

Read-Only

Read/
Change

Ratched

No Access

Saturday, 2 May 2009

Hospital Example

52

Hospital

Bedlam

Ward

Crippen

Nurse

Jeckyl

Bed Nurse

Fred

Rampton

Nurse Ward

Curie Hyde

Bed

Fred

NurseFlorence

BSN

Blood
Pressure

Pulse

Daisy

Read-Only

Read/
Change

Ratched

No Access

No Access

Saturday, 2 May 2009

Hospital Example

52

Hospital

Bedlam

Ward

Crippen

Nurse

Jeckyl

Bed Nurse

Fred

Rampton

Nurse Ward

Curie Hyde

Bed

Fred

NurseFlorence

BSN

Blood
Pressure

Pulse

Daisy

Read-Only

Read/
Change

Ratched

No Access

No Access

Read Access

Saturday, 2 May 2009

Hospital Example

52

Hospital

Bedlam

Ward

Crippen

Nurse

Jeckyl

Bed Nurse

Fred

Rampton

Nurse Ward

Curie Hyde

Bed

Fred

NurseFlorence

BSN

Blood
Pressure

Pulse

Daisy

Read-Only

Read/
Change

Ratched

No Access

No Access

Read Access

Full Access
Saturday, 2 May 2009

Hospital Example

52

Hospital

Bedlam

Ward

Crippen

Nurse

Jeckyl

Bed Nurse

Fred

Rampton

Nurse Ward

Curie Hyde

Bed

Fred

NurseFlorence

BSN

Blood
Pressure

Pulse

Daisy

Read-Only

Read/
Change

Ratched

No Access

No Access

Read Access

Full Access

Demo Time
./ant fred
./ant nurse
•Open some sensors
•Change them
•Change rates using nurses
•Close nurse
./ant nurseauth
•Change rates using nurses

Saturday, 2 May 2009

Exercise 3

•Comes before exercise 2!

•Write an authorisation policy to allow nurse Ratched
from Rampton hospital to access patient Fred’s readings
but not to change them

•You will then use the shell to disable and enable this
policy to see its the immediate effects upon nurse
Ratched

53

Saturday, 2 May 2009

Exercise 3

•Comes before exercise 2!

•Write an authorisation policy to allow nurse Ratched
from Rampton hospital to access patient Fred’s readings
but not to change them

•You will then use the shell to disable and enable this
policy to see its the immediate effects upon nurse
Ratched

53

Exercise Time
•Use the exercise documentation found in index.html
•At the bottom click on Exercise 3
•Open ex3.p2 and fill in the blanks
•Run it with ./ant ex3

Saturday, 2 May 2009

Writing a new Managed Object

•A Managed Object is a Java class

•PonderTalk messages converted to method calls

•Constructors called by factory messages

•Instance methods called by operational messages

•Mapping done by @Ponder2op Java annotation

•Annotations introduced in Java 1.4

•Provides compile time and run time information

•e.g. @Override to indicate an overriding method

•uses apt Annotation Processing Tool instead of javac
54

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed Object

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed Object

Indicates that this
is to be a Managed

Object

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed Object

The factory will
map create to this

constructor

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

// Import and create MyManagedObject
factory := root load: “MyManagedObject”.
objDB := factory create.

Writing a new Managed Object

The factory will
map create to this

constructor

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

// Import and create MyManagedObject
factory := root load: “MyManagedObject”.
objDB := factory create.
objDB2 := factory size: 25.

Writing a new Managed Object

The factory will
map size: to this

constructor

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed ObjectKeyword
message at:put: with
two args will invoke

this method

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed ObjectKeyword
message at:put: with
two args will invoke

this method

// Add an object to the object database
objDB at: “Fred” put: root/objs/fred.

55

Saturday, 2 May 2009

package net.ponder2.managedobject;

import java.util.HashMap;
import java.util.Map;

import net.ponder2.apt.Ponder2op;
import net.ponder2.ManagedObject;
import net.ponder2.objects.P2Object;

/**
 * Implements a hash or dictionary.
 * This object holds name/managed object pairs.
 * Objects may be added and removed.
 */
public class MyManagedObject implements ManagedObject {

 private Map<String, P2Object > data;

 /**
 * Creates an empty hash
 */
 @Ponder2op("create")
 MyManagedObject() {
 data = new HashMap<String, P2Object >();
 }

 /**
 * Creates a hash with a particular minimum size
 */
 @Ponder2op("size:")
 MyManagedObject(int size) {
 data = new HashMap<String, P2Object >(size);
 }

 /**
 * adds an object to the hash
 */
 @Ponder2op("at:put:")
 P2Object store(String name, P2Object obj) {
 data.put(name, obj);
 return obj;
 }

 /**
 * retrieves an object by name
 */
 @Ponder2op("at:")
 P2Object p2_operation_at(String name) {
 return data.get(name);
 }

 /**
 * removes the named object from the hash
 */
 @Ponder2op("remove:")
 P2Object p2_operation_remove(String name) {
 return data.remove(name);
 }

 /**
 * get the number of objects in the hash
 */
 @Ponder2op("size")
 int p2_operation_size() {
 return data.size();
 }

}

Writing a new Managed Object

55

Saturday, 2 May 2009

Exercise 2 - A new managed Object

•create a new timer Managed Object with commands
sleepFor: num_of_secs event: root/event/tick
cancel

•After secs seconds it generates the named event with
no arguments. Cancel cancels the timer.

•Write PonderTalk with a new Event and a new Policy to
set the Alarm

•Create a class called Timer.

56

Saturday, 2 May 2009

Exercise 2 - A new managed Object

•create a new timer Managed Object with commands
sleepFor: num_of_secs event: root/event/tick
cancel

•After secs seconds it generates the named event with
no arguments. Cancel cancels the timer.

•Write PonderTalk with a new Event and a new Policy to
set the Alarm

•Create a class called Timer.

56

Exercise Time
•Use the exercise documentation found in index.html
•At the bottom click on Exercise 2
•Open ex2.p2 and fill in the blanks
•Run it with ./ant ex2

Saturday, 2 May 2009

Exercise 2 - Thread Notes

•Use a Thread for timing.
@Ponder2op(....)
mymethod(... OID event ...)

new Thread() {

 run() {
 Thread.sleep(secs*1000);

 event.operation(null, “create”);
 }
 catch (InterruptedException e) {
 }
};

57

Saturday, 2 May 2009

Exercise 2 - Running notes (Unix)

•You do not need the tutorial BSN policies

•You can use tut1.p2 to set up the alarm

•Create your PonderTalk in ex2.p2

•Compile and run as

ant ex2

58

Saturday, 2 May 2009

Acknowledgements

Morris Sloman

Naranker DulaySye-Loong Keoh

Alberto Schaeffer

Joe Sventek

Stephen Strowes

Steven Heeps59

Emil Lupu

Kevin Twidle

Saturday, 2 May 2009

Generated Adaptor Class
import java.util.HashMap;
import java.util.Map;

import net.ponder2.objects.P2Object;
import net.ponder2.exception.Ponder2OperationException;
import net.ponder2.exception.Ponder2Exception;
import net.ponder2.ManagedObject;

/**
 * Adaptor object for managed object
 *
 * @author Auto generated by annotation processor tool
 */
public class SampleObjectP2Adaptor extends
net.ponder2.P2ObjectAdaptor {

 /**
 * The map of create operations to constructors
 */
 private final static Map<String, CreateOperation> create;
 /**
 * The map of instance operations to methods
 */
 private final static Map<String, InstanceOperation> operation;

 // Create the call tables when the class is loaded
 static {
 create = new HashMap<String, CreateOperation>();
 operation = new HashMap<String, InstanceOperation>();

 // Create operation 'create' calls constructor for SampleObject
 create.put("create", new CreateOperation() {
 @Override
 public net.ponder2.ManagedObject call(P2Object obj, P2Object
source, String operation, P2Object... args)
 throws net.ponder2.exception.Ponder2Exception {
 return new SampleObject();

 }
 });

 // Create operation 'size:' calls constructor for SampleObject
 create.put("size:", new CreateOperation() {
 @Override
 public net.ponder2.ManagedObject call(P2Object obj, P2Object
source, String operation, P2Object... args)
 throws net.ponder2.exception.Ponder2Exception {
 return new SampleObject(args[0].asNumber());
 }
 });

 // Operation 'at:put:' calls p2_operation_at_put
 operation.put("at:put:", new InstanceOperation() {
 @Override
 public P2Object call(P2Object thisObj,
net.ponder2.ManagedObject obj, P2Object source, String operation,
P2Object... args)
 throws net.ponder2.exception.Ponder2Exception {
 net.ponder2.objects.P2Object value =
 ((SampleObject)obj).p2_operation_at_put(args[0].asString(),
args[1]);
 return value;
 }
 });

 // Operation 'at:' calls p2_operation_at
 operation.put("at:", new InstanceOperation() {
 @Override
 public P2Object call(P2Object thisObj,
net.ponder2.ManagedObject obj, P2Object source, String operation,
P2Object... args)
 throws net.ponder2.exception.Ponder2Exception {
 net.ponder2.objects.P2Object value =
 ((SampleObject)obj).p2ß_operation_at(args[0].asString());
 return value;

60

Saturday, 2 May 2009

61

Cell Policy Service

... Cell Policy
Interpreter

Managed Objects

Event Service

Policy Objects

Policies
(Text, PonderTalk)

Policy
Service

Domains

Holds refs to managed
objects: Devices, SMCs,

Policies, Roles, etc

Actions

Events

Saturday, 2 May 2009

